Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.417
Filtrar
1.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579389

RESUMO

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Assuntos
Cobalto , Peróxido de Hidrogênio , Neoplasias , Óxidos , Humanos , Porosidade , Espécies Reativas de Oxigênio , Glucose Oxidase , Imidazóis , Carbono , Glutationa , Zinco , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Environ Sci Ecotechnol ; 20: 100410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38572083

RESUMO

Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.

3.
Talanta ; 274: 125934, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574533

RESUMO

Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.

4.
Environ Res ; 252(Pt 1): 118859, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574986

RESUMO

Electrocatalytic hydrodechlorination (EHDC) is a promising approach to safely remove halogenated emerging contaminants (HECs) pollutants. However, sluggish production dynamics of adsorbed atomic H (H*ads) limit the applicability of this green process. In this study, bimetallic Pd-Cu@MXene catalysts were synthesized to achieve highly efficient removal of HECs. The alloy electrode (Pd-Cu@MX/CC) exhibited better EHDC performance in comparison to Pd@MX/CC electrode, resulting in diclofenac degradation efficiency of 93.3 ± 0.1%. The characterization analysis revealed that the Pd0/PdII ratio decreased by forming bimetallic Pd-Cu alloy. Density functional theory calculations further demonstrated the electronic configuration modulation of the Pd-Cu@MXene catalysts, optimizing binging energies for H* and thereby facilitating H*ads production and tuning the reduction capability of H*ads. Noteably, the amounts and reduction potential of H*ads for Pd-Cu@MXene catalysts were 1.5 times higher and 0.37 eV lower than those observed for the mono Pd electrode. Hence, the introduction of Cu into the Pd catalyst optimized the dynamics of H*ads production, thereby conferring significant advantages to EHDC reactions. This augmentation was underscored by the successful application of the alloy catalysts supported by MXene in EHDC experiments involving other HECs, which represented a new paradigm for EHDC for efficient recalcitrant pollutant removal by H*ads.

5.
ACS Omega ; 9(15): 17195-17203, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645332

RESUMO

Cardiac fibrosis represents one of the representative pathological characteristics in the diabetic heart. Active fibroblasts play an essential role in the progression of cardiac fibrosis. The technologies for noninvasive monitoring of activated fibroblasts still have to be investigated. The purpose of this study was to evaluate the feasibility of targeted fibroblast activation protein (FAP) molecular imaging in the early evaluation of diabetic cardiac fibrosis using [68Ga]Ga-DOTA-FAPI-04 PET/CT. PET/CT imaging was conducted in db/db mice and db/m mice at weeks 12 and 24. Diabetic heart injury was determined using echocardiography and serum biomarkers. Additionally, the levels of cardiac fibrosis were also assessed. In our study, conventional diagnostic modalities, including echocardiography and serum biomarkers, failed to monitor early-stage cardiac dysfunction and fibrosis in diabetic mice. Conversely, the results of [68Ga]Ga-DOTA-FAPI-04 PET/CT imaging demonstrated that diabetic mice had increased myocardial uptake of radioactive tracers in both early-stage and late-stage diabetes, consistent with the elevated FAP expression and increased cardiac fibrosis level. Notably, cardiac PET signals exhibited significant correlations with left ventricular ejection fractions, the E/A ratio, and the level of serum TGF-ß1, PIIINP, and sST2. The results demonstrated the potential of [68Ga]Ga-DOTA-FAPI-04 PET/CT imaging for visualizing activated fibroblasts and detecting early-stage diabetic heart injury and fibrosis noninvasively. They also demonstrated the clinical superiority of [68Ga]Ga-DOTA-FAPI-04 PET/CT imaging over echocardiography and serum biomarkers in the early monitoring of diabetes-related cardiac dysfunction and fibrosis.

6.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594616

RESUMO

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Assuntos
Microbiota , Verticillium , Verticillium/fisiologia , Gossypium/genética , Gossypium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sementes/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
7.
Talanta ; 274: 126034, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38604040

RESUMO

As an important prognostic indicator in breast cancer, human epithelial growth factor receptor-2 (HER-2) is of importance for assessing prognosis of breast cancer patients, whose accurate and facile analysis are imperative in clinical diagnosis and treatment. Herein, photoactive Z-scheme UiO-66/CdIn2S4 heterojunction was constructed by a hydrothermal method, whose optical property and photoactivity were critically investigated by a range of techniques, combined by elucidating the interfacial charge transfer mechanism. Meanwhile, PtPdCu nanoflowers (NFs) were fabricated by a simple aqueous wet-chemical method, whose peroxidase (POD)-mimicking catalytic activity was scrutinized by representative tetramethylbenzidine (TMB) oxidation in H2O2 system. Taken together, the UiO-66/CdIn2S4 based photoelectrochemical (PEC) aptasensor was established for quantitative analysis of HER-2, where the detection signals were further magnified through catalytic precipitation reaction towards 4-chloro-1-naphthol (4-CN) oxidation (assisted by the PtPdCu NFs nanozyme). The PEC aptasensor presented a broader linear range within 0.1 pg mL-1-0.1 µg mL-1 and a lower limit of detection of 0.07 pg mL-1. This work developed a new PEC aptasensor for ultrasensitive determination of HER-2, holding substantial promise for clinical diagnostics.

8.
J Coll Physicians Surg Pak ; 34(4): 383-389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576277

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of pharmacogenomics (PGx)-guided treatment in individuals with resistant hypertension (RH). STUDY DESIGN: Randomised controlled open-label study. Place and Duration of the Study: Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China, from June 2019 to November 2021. METHODOLOGY: The study assigned RH patients to two groups. The intervention group (IG) received 12 weeks of PGx-guided treatment, while the control group (CG) followed a consensus-based approach. Examining 10 genes and their alleles with 31 antihypertensive drugs in the IG, the study provided specific medication advice. The primary outcome measured the difference in office systolic blood pressure (SBP) change from baseline at 12 weeks. Secondary outcomes included changes in diastolic blood pressure (DBP), hepatic and renal function, and major adverse cardiovascular events. RESULTS: Fifty-nine patients from the First Hospital of China Medical University participated, with 29 in the IG and 30 in the CG. Significant differences were noted in SBP reduction (IG: 31.26 ± 18.64 mmHg; CG: 14.61 ± 17.74 mmHg; p=0.001) and DBP reduction (IG: 19.61 ± 17.32 mmHg; CG: 7.81 ± 11.23 mmHg; p = 0.003) after 12 weeks. One IG patient had a heart attack, and one CG subject developed heart failure. At week 12, hepatic insufficiency was observed in one IG patient and six CG patients, while renal insufficiency occurred in five patients of both groups. CONCLUSION: Treatment guided by PGx demonstrated significant reductions in both SBP and DBP compared to consensus-based treatment. KEY WORDS: Resistant hypertension, Treatment, Pharmacogenomics, Clinical study.


Assuntos
Hipertensão , Hipotensão , Humanos , Farmacogenética , Hipertensão/tratamento farmacológico , Hipertensão/genética , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea
9.
J Sep Sci ; 47(5): e2300746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471966

RESUMO

In this work, monodisperse and nano-porous poly(bismaleimide-co-divinylbenzene) microspheres with large specific surface area (427.6 m2 /g) and rich pore structure were prepared by one-pot self-stable precipitation polymerization of 2,2'-bis[4-(4-maleimidophenoxy) phenyl] propane and divinylbenzene. The prepared poly(bismaleimide-co-divinylbenzene) microspheres were employed as dispersive solid-phase extraction (DSPE) adsorbent for the extraction of triazine herbicides. Under optimized conditions, good linearities were obtained between the peak area and the concentration of triazine herbicides in the range of 1-400 µg/L (R2 ≥ 0.9987) with the limits of detection of 0.12-0.31 µg/L. Triazine herbicides were detected using the described approach in vegetable samples (i.e., cucumber, tomato, and maize) with recoveries of 93.6%-117.3% and relative standard deviations of 0.4%-3.5%. In addition, the recoveries of triazine herbicides remained above 80.7% after being used for nine DSPE cycles, showing excellent reusability of poly(bismaleimide-co-divinylbenzene) microspheres. The adsorption of poly(bismaleimide-co-divinylbenzene) microspheres toward triazine herbicides was a monolayer and chemical adsorption. The adsorption mechanism between triazine herbicides and adsorbents might be a combination of hydrogen bonding, electrostatic interaction, and π-π conjugation. The results confirmed the potential use of the poly(bismaleimide-co-divinylbenzene) microspheres-based DSPE coupled to the high-performance liquid chromatography method for the detection of triazine herbicide residues in vegetable samples.


Assuntos
Herbicidas , Verduras , Compostos de Vinila , Verduras/química , Cromatografia Líquida de Alta Pressão/métodos , Microesferas , Porosidade , Triazinas/análise , Extração em Fase Sólida/métodos , Herbicidas/análise , Limite de Detecção
10.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475090

RESUMO

In the context of defect detection in high-speed railway train wheels, particularly in ultrasonic-testing B-scan images characterized by their small size and complexity, the need for a robust solution is paramount. The proposed algorithm, UT-YOLO, was meticulously designed to address the specific challenges presented by these images. UT-YOLO enhances its learning capacity, accuracy in detecting small targets, and overall processing speed by adopting optimized convolutional layers, a special layer design, and an attention mechanism. This algorithm exhibits superior performance on high-speed railway wheel UT datasets, indicating its potential. Crucially, UT-YOLO meets real-time processing requirements, positioning it as a practical solution for the dynamic and high-speed environment of railway inspections. In experimental evaluations, UT-YOLO exhibited good performance in best recall, mAP@0.5 and mAP@0.5:0.95 increased by 37%, 36%, and 43%, respectively; and its speed also met the needs of real-time performance. Moreover, an ultrasonic defect detection data set based on real wheels was created, and this research has been applied in actual scenarios and has helped to greatly improve manual detection efficiency.

11.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521855

RESUMO

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , NADPH Oxidase 2 , Animais , Camundongos , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Simpatectomia
12.
J Multidiscip Healthc ; 17: 1231-1240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524862

RESUMO

Objective: Tuberculosis (TB) is a major public health problem that affects millions of people worldwide. Malnutrition is a common complication of TB and can worsen the disease outcome. The purpose of this study was to investigate the dietary and nutritional status, as well as the dietary structure, of TB patients in Hulunbuir City, Inner Mongolia, China. Additionally, the study aimed to analyze the factors that influence the nutritional status in order to provide a theoretical foundation for the prevention and treatment of TB and related issues. Methods: A cross-sectional study was conducted on 334 randomly selected TB patients from Hulunbuir City Second Hospital. A questionnaire survey was administered to collect information on demographic characteristics, dietary habits, and food intake. Nutritional status was assessed by body mass index (BMI). Dietary diversity score (DDS) was calculated based on the number of food groups consumed in the previous 24 hours. Statistical analysis was performed using SPSS 20.0 software. Descriptive statistics employed rates and composition ratios, and categorical data was represented using frequencies and percentages. The chi-square test was used to analyze the association between nutritional status and other variables, with a significance level set at α=0.05. Multivariable ordinal logistic regression analysis was performed to identify the independent factors affecting the nutritional status of TB patients. Results: The univariate analysis revealed statistically significant differences (P < 0.05) in the nutritional status (as measured by BMI) among tuberculosis patients, considering ethnicity, educational level, smoking, meat-based diet, vegetable consumption, and DDS grading. No statistically significant differences were found regarding gender, age, marital status, occupation, sleep duration, alcohol consumption, and consumption of rice and flour dishes. Statistically significant variables from the univariate analysis were included in a multivariable ordinal logistic regression analysis model. The findings highlighted that educational level (high school or below), smoking, meat-based diet, DDS scores of 1-3, and a primarily vegetable-based diet had independent effects on the nutritional status of tuberculosis patients (all P < 0.05). No significant difference was found in nutritional status between the Han ethnic group and other ethnicities. Conclusion: The study revealed that the dietary and nutritional status of TB patients in Hulunbuir City was suboptimal and influenced by several factors. Smoking, meat-based diet, and low dietary diversity score were the primary risk factors for malnutrition among TB patients. The study suggests that nutritional education and intervention programs should be implemented for TB patients to improve their dietary quality and nutritional status.

13.
J Colloid Interface Sci ; 662: 149-159, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340514

RESUMO

Efficient and stable oxygen reduction reaction (ORR) catalysts are essential for constructing reliable energy conversion and storage devices. Herein, we prepared noble metal-free FeCoNiMnV high-entropy alloy supported on nitrogen-doped carbon nanotubes (FeCoNiMnV HEA/N-CNTs) by a one-step pyrolysis at 800 °C, as certificated by a set of characterizations. The graphitization degree of the N-CHTs was optimized by tuning the pyrolysis temperature in the control groups. The resultant catalyst greatly enhanced the ORR characteristics in the alkaline media, showing the positive onset potential (Eonset) of 0.99 V and half-wave potential (E1/2) of 0.85 V. More importantly, the above FeCoNiMnV HEA/N-CNTs assembled Zn-air battery exhibited a greater open-circuit voltage (1.482 V), larger power density (185.12 mW cm-2), and outstanding cycle stability (1698 cycles, 566 h). This study provides some valuable insights on developing sustainable ORR catalysts in Zn-air batteries.

14.
Int J Biol Macromol ; 262(Pt 2): 129984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342260

RESUMO

The ATP-binding cassette (ABC) transporters have crucial roles in various biological processes such as growth, development and immune defense in eukaryotes. However, the roles of ABC transporters in the immune system of crustaceans remain elusive. In this study, 38 ABC genes were systematically identified and characterized in Penaeus vannamei. Bioinformation analysis revealed that PvABC genes were categorized into ABC A-H eight subfamilies with 17 full-transporters, 11 half transporters and 10 soluble proteins, and multiple immunity-related cis-elements were found in gene promoter regions. Expression analysis showed that most PvABC genes were widely and highly expressed in immune-related tissues and responded to the stimulation of Vibrio parahaemolyticus. To investigate whether PvABC genes mediated innate immunity, PvABCC5, PvABCF1 and PvABCB4 were selected for dsRNA interference experiment. Knockdown of PvABCF1 and PvABCC5 not PvABCB4 increased the cumulative mortality of P. vannamei and bacterial loads in hepatopancreas after infection with V. parahaemolyticus. Further analysis showed that the PvABCF1 and PvABCC5 knockdown decreased expression levels of NF-κB pathway genes and antimicrobial peptides (AMPs). Collectively, these findings indicated that PvABCF1 and PvABCC5 might restrict V. parahaemolyticus challenge by positively regulating NF-κB pathway and then promoting the expression of AMPs, which would contribute to overall understand the function of ABC genes in innate immunity of invertebrates.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Vibrio parahaemolyticus/genética , Penaeidae/genética , Penaeidae/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Artrópodes/genética , Transdução de Sinais , Imunidade Inata/genética , Trifosfato de Adenosina/metabolismo
15.
Sci Total Environ ; 918: 170549, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309335

RESUMO

Vegetation is vital to the ecosystem, contributing to the global carbon balance, but susceptible to the impacts of climate change. Monitoring vegetation drought remains challenging due to the lack of widely accepted drought indices. This study focused on vegetation, and simulated the vegetation suitable water demand and soil available water supply (calculated by Remote-sensing-based Water Balance Assessment Tool model). The standardized Vegetation Water deficit Index (SVWDI) was established by calculating the vegetation water deficit, which reflects the response of vegetation to drought. We examined the spatiotemporal evolution of vegetation drought on the Loess Plateau and evaluated the applicability of standardized vegetation water deficit index. Our findings revealed that the standardized vegetation water deficit index demonstrated an overall upward trend across different time scales from 1991 to 2020. Drought conditions were concentrated in the first 20 years of the study period, but vegetation drought on the Loess Plateau has been alleviated in the past decade. Moreover, as the time scale extended, the trend of SVWDI generally decreased, with approximately 49.50 % (1-month scale), 46.66 % (3-month scale), 47.08 % (12-month scale), and 32.16 % (24-month scale) of the grid areas experiencing increased SVWDI. The correlation between SVWDI and tree-ring width index (TRWI) performed well under all precipitation gradients, but the Palmer drought severity index (PDSI) was only highly correlated with TRWI in regions with low precipitation. In terms of the relationship with vegetation health, SVWDI demonstrated the highest correlation with the normalized difference vegetation index (NDVI) across different time scales, followed by PDSI and standardized precipitation evapotranspiration index (SPEI). This study provides insights into the evolution of vegetation drought in response to climate change. The findings can guide initiatives such as returning farmland to forest and grassland on the Loess Plateau to aid climate change adaptation strategies.


Assuntos
Secas , Ecossistema , Água , Solo , Florestas , Plantas , Árvores , Mudança Climática , China
16.
Environ Sci Technol ; 58(9): 4193-4203, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393778

RESUMO

Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.


Assuntos
Carbonatos , Ecossistema , Compostos Férricos , Nitratos , Nitratos/metabolismo , Processos Autotróficos , Temperatura , Enxofre/metabolismo , Reatores Biológicos , Desnitrificação , Nitrogênio
17.
Mikrochim Acta ; 191(3): 139, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360951

RESUMO

Bisphenol A (BPA), an important endocrine disrupting compound, has infiltrated human daily lives through electronic devices, food containers, and children's toys. Developing of novel BPA assay methods with high sensitivity holds tremendous importance in valuing the pollution state. Here, we constructed an ultrasensitive photoelectrochemical (PEC) aptasensor for BPA determination by regulating photoactivities of CdS/Ni-based metal-organic framework (CdS/Ni-MOF) with [Ru(bpy)2dppz]2+ sensitizer. CdS/Ni-MOF spheres exhibited excellent photocatalytic performance, serving as a potential sensing platform for the construction of target recognition process. [Ru(bpy)2dppz]2+ were embedded into DNA double-stranded structure, functioning as sensitizer for modulating the signal response of the developed PEC aptasensor. The proposed PEC sensor exhibited outstanding analytical performances, including a wide linear range (0.1 to 1000.0 nM), low detection limit (0.026 nM, at 3σ/m), excellent selectivity, and high stability. This work provides a perspective for the design of ideal photosensitive materials and signal amplification strategies and extends their application in environment analysis.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Fenóis , Criança , Humanos , Substâncias Intercalantes , Técnicas Biossensoriais/métodos , Compostos Benzidrílicos , DNA
18.
Foods ; 13(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397602

RESUMO

Tartary buckwheat green leaves are considered to be among the most important by-products in the buckwheat industry. Although Tartary buckwheat green leaves are abundant in pectic polysaccharides, their potential applications in the food industry are quite scarce. Therefore, to promote their potential applications as functional or fortified food ingredients, both deep-eutectic-solvent-assisted extraction (DESE) and high-pressure-assisted deep eutectic solvent extraction (HPDEE) were used to efficiently and selectively extract pectic polysaccharides from Tartary buckwheat green leaves (TBP). The results revealed that both the DESE and HPDEE techniques not only improved the extraction efficiency of TBP but also regulated its structural properties and beneficial effects. The primary chemical structures of TBP extracted using different methods were stable overall, mainly consisting of homogalacturonan and rhamnogalacturonan-I (RG-I) pectic regions. However, both the DESE and HPDEE methods could selectively extract RG-I-enriched TBP, and the proportion of the RG-I pectic region in TBP obviously improved. Additionally, both the DESE and HPDEE methods could improve the antioxidant and anti-glycosylation effects of TBP by increasing its proportion of free uronic acids and content of bound polyphenolics and reducing its molecular weight. Moreover, both the DESE and HPDEE methods could partially intensify the immunostimulatory effect of TBP by increasing its proportion of the RG-I pectic region. These findings suggest that DES-based extraction techniques, especially the HPDEE method, can be promising techniques for the efficient and selective extraction of RG-I-enriched TBP.

19.
Dalton Trans ; 53(8): 3825-3835, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38305671

RESUMO

Six novel lanthanide complexes ([Nd2(L)(H2O)6]n·4.58n(H2O) (1), [Ln(H3L)(H2O)]n·0.5n(H2O), Ln = Sm (2), Eu (3), Gd (4), Tb (5), Eu0.18Gd0.62Tb0.20 (6)) have been hydrothermally synthesized based on the ligand 4,5-di(3,5-dicarboxylphenoxy)phthalic acid (H6L). Single crystal X-ray diffraction reveals that complexes 1-6 are 2D structures, where 2-6 are isomorphic. Complexes 3 and 5 exhibit the characteristic fluorescence of Eu(III) and Tb(III) ions respectively, while complex 4 shows blue-green light emission based on the ligand. In particular, the ternary Eu/Gd/Tb complex 6 shows white light emission with a CIE (Commission International del'Eclairage) chromaticity coordinate of (0.330, 0.339) and hence close to pure white light emission. Moreover, complexes 3 and 5 display specific fluorescence-enhanced detection performance for Pb2+ ions: The interaction between Pb2+ ions and the ligand enhances the charge transfer efficiency between the ligand and the Eu(III) and Tb(III) ions and thus leads to fluorescence enhancement of complexes 3 and 5. More importantly, complex 3 exhibits the lowest detection limit of 4.72 nM for Pb2+ ions among the existing complex fluorescent probes. In addition, both complexes 3 and 5 show good performance for recycling and for the detection of Pb2+ in real water samples.

20.
J Hazard Mater ; 465: 133438, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198865

RESUMO

Given widespread presence of polystyrene (PS) microplastics/nanoplastics (MPs/NPs), the electroactive responses and adaptation mechanisms of electroactive biofilms (EABs) exposed long-term to PS-containing aquatic environments remain unclear. Therefore, this study investigated the impacts of PS MPs/NPs on electroactivity of EABs. Results found that EABs exhibited delayed formation upon initially exposure but displayed an increased maximum current density (Imax) after subsequent exposure for up to 55 days. Notably, EABs exposure to NH2PS NPs (EAB-NH2PSNPs) demonstrated a 50% higher Imax than the control, along with a 17.84% increase in viability and a 58.10% increase in biomass. The cytochrome c (c-Cyts) content in EAB-NH2PSNPs rose by 178.35%, benefiting the extracellular electron transfer (EET) of EABs. Moreover, bacterial community assembly indicated the relative abundance of electroactive bacteria increased to 87.56% in EAB-NH2PSNPs. The adaptability mechanisms of EABs under prolonged exposure to PS MPs/NPs predominantly operate by adjusting viability, EET, and bacterial community assembly, which were further confirmed a positive correlation with Imax through structural equation model. These findings provide deeper insights into long-term effects and mechanisms of MPs/NPs on the electroactive properties of EABs and even functional microorganisms in aquatic ecosystems.


Assuntos
Microplásticos , Poliestirenos , Plásticos , Ecossistema , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...